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symmetries in the fermion-fermion sector 
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Max-Planck-Institut fur Kernphysik, Heidelberg, West Germany 

Received 25 July 1985, in final form 26 January 1987 

Abstract. We consider a supersymmetric formulation of the two-point function and show 
explicitly that the underlying stochastic model symmetries can be implemented in the 
fermion-fermion sector through a compact parametrisation of the uF matrix. 

1. Introduction 

In recent years, the supersymmetric technique (SST) has been successfully applied to 
study various physical problems. In the theory of disordered systems as well as in the 
statistical theory of nuclear reactions, random Hamiltonians with Gaussian distributed 
elements are used to model statistical phenomena (see Efetov 1983, Wegner 1983, 
Verbaarschot et al 1985 and references therein). The physical quantities, defined as 
the energy averaged ‘n-point functions’, are obtained after an ergodicity assumption 
from the corresponding ensemble averaged ‘n-point generating functions’ which involve 
both commuting and anticommuting integration variables. Although many intrinsic 
properties and the general procedure of the SST have been already clarified, some 
aspects need to be better understood. A comprehensive and explicit discussion of the 
SST, applied to the calculation of compound-nucleus cross sections, was given by 
Verbaarschot, Weidenmuller and Zirnbauer (1985); one of the aspects extensively 
discussed by these authors, and with which we will be concerned here, is the problem 
of implementation of the underlying symmetries of the system in the parametrisation 
of the so-called composite variables (a-matrix elements). This problem appears also 
in the ‘replica trick’ formulations for the two-point function where a hyperbolic 
symmetry was discovered and studied by Wegner (1979). Schafer and Wegner (1980) 
showed that uniform convergence problems in the integration of the a-variables are 
overcome when the matrix a is parametrised in terms of the non-compact (hyperbolic) 
group of symmetry transformations and an appropriate shift of a, consistent with the 
saddle-point structure, is performed. In the context of the supersymmetric formalism, 
the commuting composite variables form two classes: the variables of the ‘boson-boson 
block’ ( as matrix) and the variables of the ‘fermion-fermion block’ ( aF matrix). 
Verbaarschot et al showed that, for a particular (later referred as the original) rep- 
resentation of the a matrix, uniform convergence problems appear related to the aB 
variables. To deal with this problem, they turned their attention to the study of the 
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group of symmetry transformations associated with the stochastic model and found 
that the transformations were non-compact with respect to both uB and uF (see appendix 
D of Verbaarschot et a1 (1985)). While this was desirable for uB, because the arguments 
of Schafer and Wegner are applicable there, it is not for uF. The attempts to parametrise 
uF in terms of a non-compact group failed because of difficulties related to convergence 
and saddle-point properties. Therefore, they concluded that the parametrisation of 
the uF matrix ‘is not consistent with the symmetries (of the stochastic model) . . . it 
being actually impossible to implement (those) symmetries in uF’. So, they were ‘forced 
to keep the original uF’ which was later, after a ‘compactification argument’, represented 
in terms of a compact group. The understanding of this problem is the motivation of 
the present paper. It is certainly one aspect of the supersymmetric technique whose 
elucidation is very much called for. 

We will show that, taking into account, consistently, conjugation and linear transfor- 
mation properties of graded vectors, we obtain readily an explicit realisation of the 
group of symmetry transformations which contains a compact and a non-compact 
subgroup. Given these solutions and requiring invariant structure of the uF matrix 
obtained from the Hubbard-Stratonovitch transformations, we are left with the compact 
subgroup. In this way, we show that the symmetries of the stochastic model can be 
implemented in the parametrisation of cF. Problems of convergence and difficulties 
with respect to the structure of the saddle-point manifold disappear because it is not 
the hyperbolic but the elliptic symmetry which is associated with this sector. In  Q 2 
we consider a two-point generating function, we calculate its ensemble average, discuss 
the Hubbard-Stratonovitch transformation and the convergence problems associated 
with it. In  § 3 we restrict ourselves to the fermion-fermion sector, give explicit solutions 
for the group of symmetry transformations and construct and parametrise the matrix 
f f F .  

2. Two-point functions and symmetry properties 

In this section we outline the relevant results and characteristic definitions for a 
supersymmetric formulation of the two-point function. We leave for the next section 
the problem of implementation of the stochastic model symmetries. 

To keep contact with the work of Verbaarschot et al, let us consider the following 
two-point generating function 

where, without loss of generality, the N x N matrices Bp and 9; are written as 

(9p),,u = 

(BL),,u = 

- HPy + J P y  

- H,,  + J L y  
being Im 
ensemble of Gaussian distributed variables centred at the origin with variance 

= Im E~ > 0 and the Hamiltonian matrix elements H P y  are members of an 

(2.3) 

J F y  and J L y  are source terms defined according to the physical problem. When J,,,, = J L y ,  
the generating function is normalised to unity. 
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Using integration properties of the anticommuting variables and the graded matrices 

where s, t ,  U and U are column vectors of dimension N whose elements are real 
commuting (ordinary) variables and x, xX, 77 and rlX vectors of dimension N whose 
elements are anticommuting (Grassmann) variables, we can represent the generating 
function in the following way: 

Z ( E ~ ,  E T )  = I d[$l exp(fillr’Allr) (2.6) 

where the imaginary number i is added to assure convergence for the integration over 
the commuting variables and the symbol $ is used to denote the adjoint operation of 
the second kind (see Rittenberg and Scheunert (1978)). We separate the matrix A as 
follows: 

A = N ( E ~ ,  E ~ , J , J ’ ) + L ~ @ H  (2.7) 
where L is a diagonal 8 x 8 graded matrix whose elements are 1, 1, -1, -1, 1, 1, -1, 
-1. For the ensemble average of the generating function we obtain 

Z ( c l ,  E T )  = d[$] exp(fi$’N$) J 

The last exponential factor carries the symmetries of H .  Defining the matrix (the 
superscript T means transposition) 
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Here, trg denotes as usual the graded trace. At this level, one can, in principle, obtain 
the physical quantities as derivatives of the averaged generating function. However, 
we have still a huge number of integration variables ( 8 N  variables, with N+oo in 
nuclear reaction problems). The reduction of this number is thus the main objective. 
Due to the quartic order terms in 4. The CC, integration cannot be managed as it stands. 
A normal procedure to overcome this problem is to have recourse to the Hubbard- 
Stratonovitch transformation 

ih ='(:)' 2 1 d [ a ]  exp( ---Ntrg 4 a' +-trg 2 (UL"*@$'L''~) 

This transformation introduces new integration variables (the independent elements 
of the graded 8 x 8 matrix a )  but we are left with only quadratic terms in the CC, variables. 
The integration over the 8N CC, variables can be done provided the a integration is 
uniformly convergent with respect to 4, i.e. when the interchange of the integrations 
over d[a]  and d[$] is possible. This is a mathematical problem. We have also a 
physical problem that stems from the fact that the particular structure of the cr matrix 
must be consistent with the shift a+  a+(ih/N)L1'2q54'L1'2, implicit in (2.11). In 
other words, the physical information embodied by the symmetries of the form 
L1'244fL"2 should be preserved and carried by the a matrix. This is, after all, the 
idea of the implementation of such symmetries in the parametrisation of the matrix a. 

The group of symmetry transformations f : 4 + ?4 is determined from the condition 
that it leaves invariant the form L1'24~'L ' '2  and from the definition of charge conjuga- 
tion for anticommuting variables ((x",)' = -x,). Therefore 

P L f =  L (2.12) 

(2.13) 

(2.14) 

Here, I,,, is the m x m unit matrix. It is easy to see that the transformation 'f induces 
the following transformation for the composite variables: 

(2.15) 

(2.16) 
Clearly 

T-' = CTTTC. (2.17) 
The group of transformations f" known as the pseudo-unitary orthosymplectic Lie 
group UOSP(2,2/2,2),  has been studied by Verbaarschot er al in terms of its generators. 
These authors noted the non-compact character of the transformations for as and aF. 
In the next section, we show explicitly that the compact solutions are also genuine 
solutions of (2.17). 
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3. Parametrisation of the uF matrix 

Since we are concerned only with the fermion-fermion sector, let us take the commuting 
variables of +b equal to zero. This is precisely the kind of generating function that we 
would have in a replica formalism for the two-point function with anticommuting 
variables. In this case, our generating function (with the obvious reductions of N, 4 
and L )  takes the form 

x 2  
z ( & ? E : ) = j -  d [ ~ a ~ e x p ( ~ q i ~ i = q a - ~  Tr( L k" q5a 4 L;l2) ') ( 3.1 ) 

and the elements of the group of symmetry transformations satisfy the relation 

t - I t  = I4 (3.2) 

where 

1 - l  = (rTtr)T. (3.3) 

According to these requirements, if 

f41 ?42 l43 l44 

(3.4) 

is one element of the group, then its inverse defined by equation (3.3) will have the 
structure 

(3 .5 )  

We want to emphasise here that a careless use and  interpretation of the adjoint operation 
in the presence of anticommuting variables, could give rise to non-compatible solutions 
for the group of symmetry transformations. We now give the following explicit solutions 
to (3.2) and (3.3): 

ele sinh w 

0 
e-la cosh w 

e-IQ cosh w 0 -e-'B sinh w 

elDL cosh w 0 
-ele sinh w 0 elm cosh w 

0 e-l'sinh w 0 

e-'' cosh z 0 0 -e-lY sinh z 

(3.6) 

(3.7) 
el' cosh z -e" sinh z 0 
-e" sinh z elp cosh z 0 

sinh z 0 0 e-'' cosh z 

e'* cos v e'* sin v 
e-"' sin v cos v 

0 

e" cos U' e'* sin U' 
sin cos U' 0 e-iv' 
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where all the 'latitude angles' lie in the interval [-r/2, 77/21, the parametric space of 
the longitudinal angles U and U' is [-r, r) and w and z are complex variables whose 
real parts are non-compact parameters and their imaginary parts are compact para- 
meters lying in the interval [-7, 7 ) .  The inverses are defined according to (3.5), for 
example 

-eie sinh w 

0 
eim cosh w 

(3.9) 

e'" cosh w 0 e-ie sinh w 

e" sinh w 0 e-'" cosh w 

0 e-'" cosh w 0 

0 -e-"sinh w 0 

? ; I =  

It is trivial to see that each of these subgroups and therefore the full group contains 

Before we come to the parametrisation problem, let us explicitly construct the 
a compact and a non-compact subgroup. 

matrix mF. Given the matrices 

(3.10) 

(3.11) 

we have that 

Tr(LL/2q5,+iLL'2)2 = 2(~*~)~-4~*7777*~+4~*17~77~~+2(7)*7))~. (3.12) 

Using Gaussian integrals like 

(3.13) 

(3.14) 

and 

exp(--&(x's'.iTX)') 1 dq e ~ p [ - N q ~ F i h q ( , y ~ 7 7 ~ - q ~ x ) ]  (3.15) 

we obtain the following relation: 

exp( - G [ ( x * x ) 2 +  h 2  (77'7712- 2 x * m * x  +2x*T~q~x1) 

1 d r  d r ' d p  dq dp 'dq 'exp 
273 

-ih[rx'X + ''77'7 + i ( p  -iq)x'q - i ( p + i q ) q * x  
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With 

r O z *  - y  
r Y* 

-y* z* 

where 
z = p + i q  y =p’+iq’ 

the last integral equation can be written as 

4389 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

The matrix uF that we obtain here is exactly the same as the one given for this 
sector by Verbaarschot et al, except that an overall factor i appears there to compensate 
the change of sign coming from the graded trace. This factor is irrelevant and has no 
effect on our discussion. 

Now we concentrate on the parametrisation problem. To simplify the analysis, let 
us write the matrix uF as 

where r, r’ and p are real parameters, U is a 2 x 2 special unitary matrix and 

(3.20) 

(3.21) 

This matrix has two diRerent real eigenvalues. All that we want to know is the matrix 
to such that 

(3.22) 

It is easy to see that such a matrix has to be one belonging to the subgroup tl  . Taking 
into account the structure of nF, we fix the values a + 6 = ~ / 2 ,  w = ix. Finally, choosing 
a = 0, we have for uF the following compact parametrisation: 

U 0  U’ 0 
uF= ( I,) tol‘DtO( (3.23) 

where 

I C O S X  o -sinx o \ 

t i ’  = rTt;r. I 0 cosx 0 -sinx 
s inx  0 cos x 0 (3.24) 

\ o s inx  0 cos x ) 
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Formally, once the interchange of the integrations over d[ u] and d[ $ J is justified, 
the $ integration can be trivially performed. The problem is reduced into a non-linear 
u model and one proceeds as usual. The reader is referred to the paper of Verbaarschot 
et al, where two-point functions (compound nucleus cross sections) are calculated and 
expressed as threefold integrals. 

4. Conclusion 

In this quite direct and simple way we have shown that the group of symmetry 
transformations associated with the ‘fermion-fermion sector’ always contains a compact 
and a non-compact subgroup and that the underlying symmetries of the physical system 
are implemented by a compact parametrisation of the uF matrix. This conclusion holds 
also for time-reversal non-invariant systems. 
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